Run 2B Pbar Collection-Aperture

- Collection of the secondaries beam off the production target.
- Involves both AP2 and Debuncher
- Sub projects:
 - Alignment
 - Orbit control
 - Opening/Moving Physical Limitations
 - Diagnostics

Re-write of Goals/Milestones

- Verify collection model with beam measurements
- Decide design strategy
- List items (rebuild, move, motorize, survey)
- Develop design and installation schedule
- Fabricate Components
- Install Components

- Decide diagnostics needs
- Implement instrumentation
- Decide optics design
- Verify optics with beam
- Develop studies plan for beam based alignment
- Develop studies for identification of lattice upgrades

Verify Model

- Lebedev studies shows Aperture improvement has bigger gain than Lens Gradient.
- AAC suggests that this be verified.
- *Conflict* between studies and old measurement
 - Lens Gradient study included Target-Lens distance change and some re-tuning/re-steering.
 - OptiM study included optimizing Target-Lens distance & AP2 lattice optics with perfect steering.

Lens as part of AP2

- The Lens is steering beam
 - Change lens gradient and the secondaries beam positions on AP2 SEMs move.
 - Horizontal effect much greater than Vertical
 - Appears to perform some of the PMAG 3° bend
- Need to remove Lens steering
 - Short tests result in decrease of pbar production
 - Will need to re-steer AP2 line
 - New HT704 and Left Bend shunts; VT704 soon?
 - Several shifts to re-steer; will affect stacking rate but should result in same, or better, pbar production rate

Horizontal Re-Steering of AP2

- Stacking mode of operation
- Use SEMs to monitor positions
- Quad Centering technique
 - Vary current and monitor position
 - No movement: orbit through center of element
 - Perform on Lens and first 6 Quads
 - Steer using HT107, PMAG, HT704 and H704

Aperture Measurements

- Use the Debuncher scrapers at known βs
 - Measure Debuncher aperture with reverse protons
 - Assuming that the Debuncher has a larger aperture than AP2, then during stacking slowly move Debuncher scraper to find edge and extinguishing points to determine AP2 aperture for antiprotons
 - Make sure only measuring antiprotons (end of stacking cycle measurement)

AP2 Scrapers to Define Aperture

- While stacking, move scraper until stacking is affected by 5-10% (record position).
- Do single scraper of pair at a time.
- For each pair, determine where they meet.
- Move all scrapers to recorded positions and now the AP2 aperture is defined.
 - Can always close scrapers more to define a smaller aperutre.

Lens Gardient Measurement

- Required:
 - No Steering by Lens
 - AP2 Scrapers to define the AP2 aperture
- Measure pbar production as a function of Lens Gradient
- Re-do with smaller aperture
- Cross check aperture with Debuncher scraper measurement
- Compare with model

Similar Measurments

- Similar requirements and procedure as for Lens Gradient:
 - No Lens steering, AP2 aperture defined by scrapers, measure pbar production rate.
- Vary (one at a time)
 - Proton Beam size on target
 - Timing of Lens pulse
 - Chord distance through target
 - etc.
- Compare with model

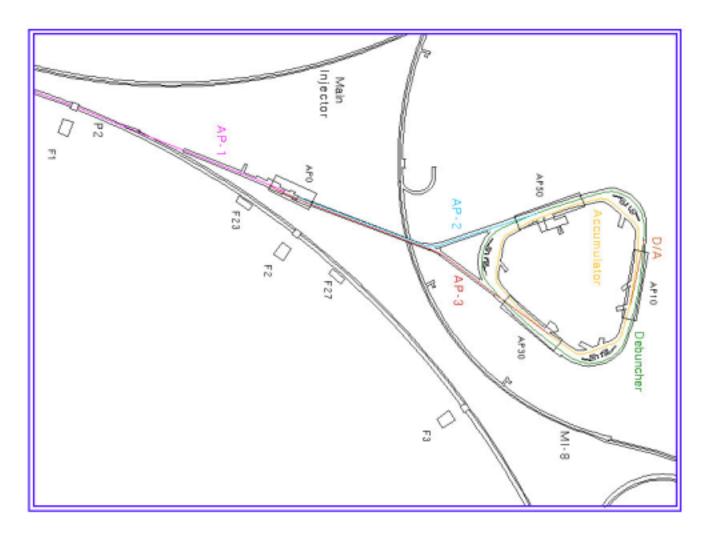
Phase Space off the Target

- Use two pairs of scrapers in the same plane to perfrom Raster scan
 - Set 1mm opening of one pair of scrapers and then move 1mm opening of a second scrapers; record rates.
- With optics, propagate results back to target and determine initial distribution

Orbit Control Status

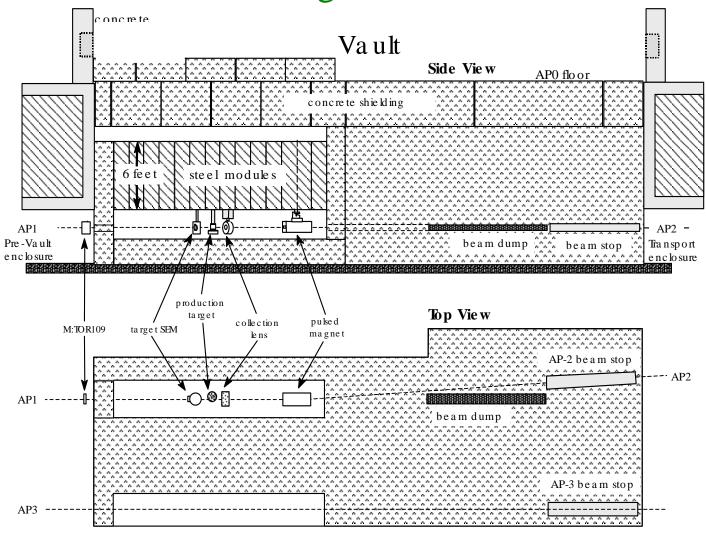
- AP2 Trims and shunts
 - HT704 and Left Bend shunts in place; elements have been barely exercised.
 - Prep work for VT704 is occurring.
 - Future trims for injection region control.
- Debuncher Motorized Quad Stands
 - 10 stands are prepared.
 - Little items (bellows) left to be fully prepared.
 - Time for installation (~2 shifts/stand & vacuum recovery); looking at summer shutdown.

Work to do Lattice Measruements

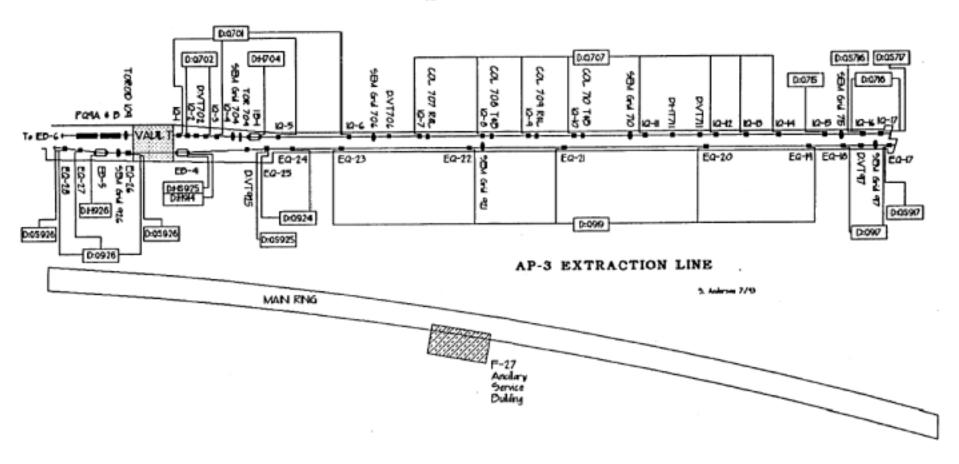

- Closed orbit 1-bump measurments in Debuncher
 - Use current BPM system to make initial measurements
 - DRF3 is being setup to bunch beam for BPMs & to change energy; 1-bumps at different energies
- 1-bump measurements to measure AP2 lattice
 - Need to trigger AP2 BPMs for reverse protons
 - Need to develop DRF1 Adiabatic cavity curves to send
 53MHz beam up AP2
 - Cross check BPMs with SEM positions
 - Use DRF3 and DRF1 to send different energy beam
 - Target station dual-BPM is being fabricated to complete the coverage of AP2 line for reverse protons

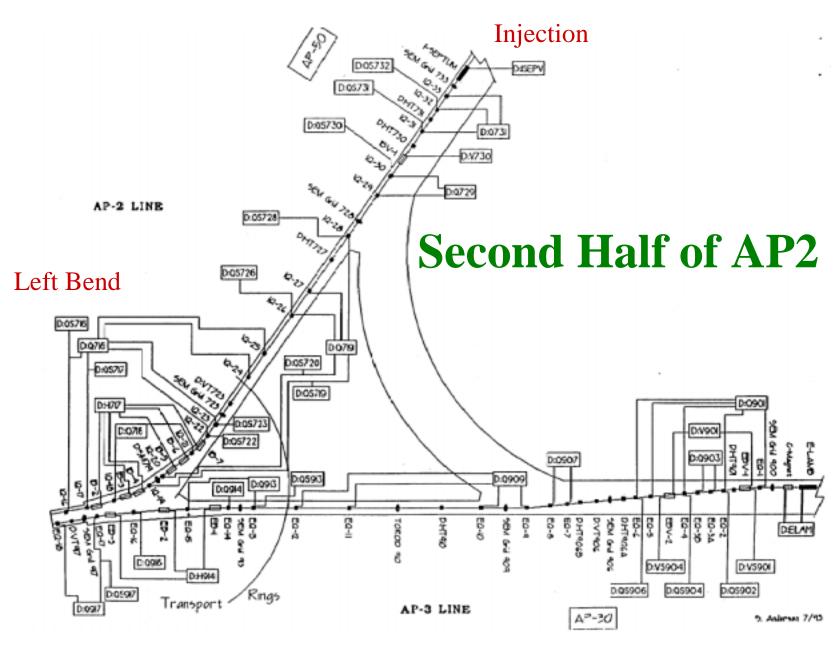
BPM Electronics & DAQs

- Debuncher Closed Orbit Electronics & DAQ
 - Single BPM test within a few weeks (pre-amp, log detector and switching system)
 - Deciding Front-end system and implementation
 - Java OAC and console app in development
- AP2 Beamline BPM DAQ
 - Deciding Front-end system and implementation
 - Java OAC and console app to be developed
 - Ethernet pulls to F23 and F27 need to be planned


Identifying Physical Apertures

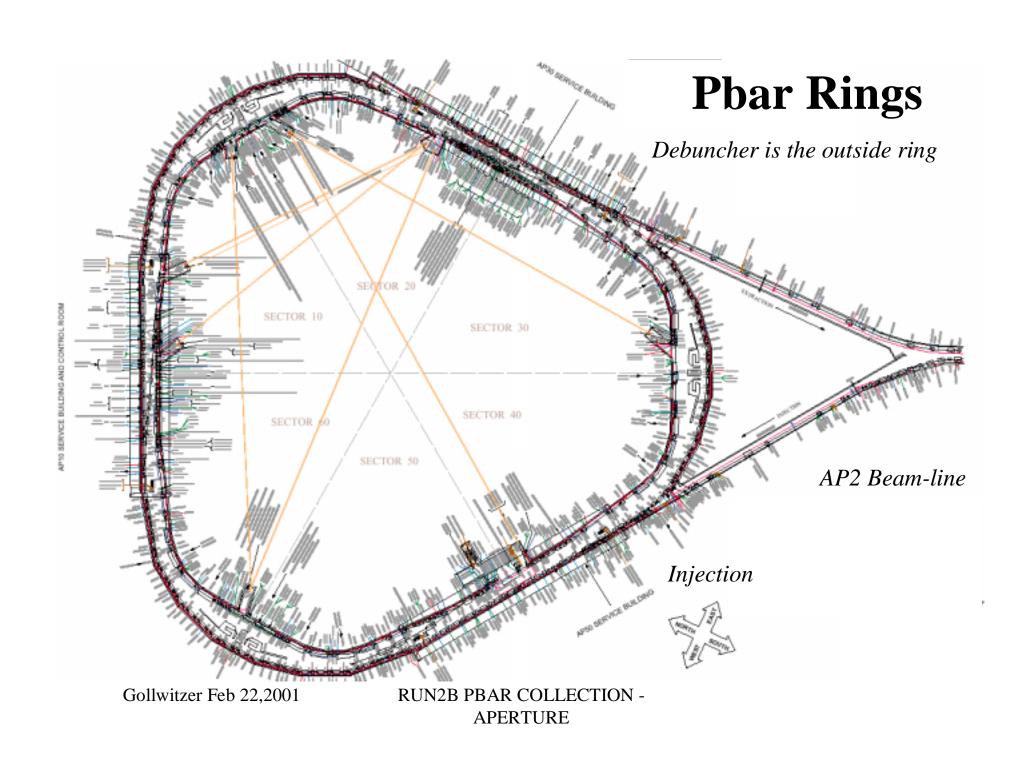
- Need to check all elements
 - Location
 - Beam pipe size
 - Alignment
 - Determine expected beam size with each component
- Determine Which *Re* to do
 - Re-design, Re-build, Re-locate
- Plan and Implement


Antiproton Source


End of AP1→Target → Lens → AP2 Start

First Half of AP2

AP-2 INJECTION LINE



Gollwitzer Feb 22,2001

RUN2B

APERTURE

